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We formulate a method for incorporating quantum fluctuations into molecular-dynamics simulations

of many-body systems, such as those employed for energetic nuclear collision processes.

Based on

Fermi’s golden rule, we allow spontaneous transitions to occur between the wave packets which are not
energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits
appealing physical properties, including relaxation towards quantum statistical equilibrium.

PACS numbers: 05.30.—d, 02.70.Ns, 24.10.—1

Molecular-dynamics simulations are useful for under-
standing both statistical and dynamical properties of
many-body systems in a variety of physical contexts [1].
While quantitative insight can be obtained in many cases,
the foundation and interpretation of such approaches is
problematic when quantum systems are addressed. In
these approaches the many-body system is usually rep-
resented as a (possibly antisymmetrized) product of pa-
rametrized single-particle wave packets, and equations of
motion for the parameters are then derived from a suitable
variational principle. This corresponds to a mean-field
treatment of the quantal problem, and the ensuing param-
eter dynamics is then effectively classical. Consequently,
the statistical properties of the system will be classical
rather than quantal, thus casting doubt on the quantitative
utility of results obtained in complicated scenarios where
quantal statistics plays a major role.

This generic shortcoming of molecular dynamics origi-
nates in the neglect of the spectral distribution of energy
eigenvalues associated with the wave packets which are
not energy eigenstates [2]. In the present Letter we sug-
gest a possible method by which this inherent problem
can be largely alleviated. This novel method consists of
introducing a stochastic term in the dynamics so that a
given wave packet may make spontaneous transitions to
neighboring wave packets in accordance with its spectral
distribution, and it is found that the ensuing diffusive evo-
lution with this term exhibits relaxation towards quantum
statistical equilibrium. The method is rather general, so it
should be of correspondingly broad interest.

This issue is especially relevant in nuclear dynamics
where the system consists of nucleons at such densities
and excitations that quantum statistics play a major role.
Indeed, the interpretation of current heavy-ion collision
experiments depends on detailed dynamical simulations,
so the problem is an urgent one. In recent years,
significant effort has been devoted to the development of
microscopic simulation models for nuclear collisions, of
both one-body and A-body nature [3]. We shall address
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the situation in which a product of Gaussian wave packets
is employed for the A-body system, as has been done
extensively in nuclear dynamics [4—7], but the proposed
method is not restricted to this special case.

For notational convenience, we shall make our
presentation within the framework developed for the
antisymmetrized molecular-dynamics model [7], so the
basic single-particle wave packets are Gaussians of fixed
width, (r |z), where the real and imaginary parts of the
parameter z specify the centroid in position and mo-
mentum, respectively. The normalized A-body product
wave function (ry,...,ra | Z) is then characterized by the
complex parameter vector Z = (zy,...,Z4). The wave
packets Z form an overcomplete basis and can provide a
resolution of unity, 1 = [dTI'|Z)(Z|. The phase-space
measure dI' is modified by the antisymmetrization [2]
dI' = det(C)dZ, where the A X A matrix C has the
tensor elements Cpp = 0% InN /9Zpdzn, with N being
the normalization constant associated with the wave
packet Z, and 7 denoting the complex conjugate of z.

With this convenient formalism, the equations of mo-
tion for the wave packet parameters can then be written in
a compact form

, . 9H

ihC - Z o7 (D
where JH = (Z|H|Z) is the expectation value of the
A-body Hamiltonian operator A with respect to the
particular state Z. Though generally not of Hamiltonian
form, this system of equations produces a fully classical
evolution.

The starting point for our present development is the
quantum mechanical feature that a given wave packet is
generally not an eigenstate of the many-body Hamilton-
ian. The probability for the wave packet Z to contain
eigenstates of energy E is given by the spectral strength
function

pe(Z) = (Z|8(H — E)|Z), )
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which is spread around the expectation value JH with a
variance given by

ol =(Z|(H — H)|Z)

= j dU'(Z'|H — H|Z))? = 9 c!. IH

Y/ 0Z
3
where we have used the resolution of unity and made an
expansion of the matrix element (Z'|H — HH |Z) around
7 =7
The equation of motion (1) determines the evolution
of the wave packet parameter vector, Z(t), in an entirely
deterministic manner and without any physical effect of
the spectral structure of the wave packet. In order to
provide the system with an opportunity for exploring and
exploiting the various eigencomponents contributing to
its wave packet, we wish to augment the equation of
motion by a stochastic term that may cause occasional
transitions between different wave packets. Guided by
Fermi’s golden rule, we then adopt the following form
for the differential rate of transitions from a given wave
packet Z to others near Z':

2 R
w(Z — Z') = 7;1 KZ'\VIZ)Ppe(Z)). ()

}

Here the operator V represents a suitable “residual”
interaction and E is a specified energy which is usually
taken as the expectation value of the originally specified
initial state.

When the above stochastic transitions are included in
the dynamics, the object of study is the distribution of
the wave packet parameter vector, ¢(Z,t). For a closed
(and sufficiently complex) system this distribution will ap-
proach the associated equilibrium distribution. Invoking
the principle of detailed balance for a stationary distri-
bution, we readily see that the equilibrium distribution
is proportional to the spectral function pg(Z). Conse-
quently, the ensuing stochastic molecular dynamics popu-
lates the parameter space in a microcanonical manner, as
is physically reasonable since the ensemble is character-
ized by the specified energy E. This feature is perhaps
most easily recognized by considering the microcanonical
phase-space volume

Q(E) = Tr[6(H — E)]

jdl“(zla(ﬁ - E)|Z) :[dFPE(Z). (35)

For the discussion of statistical properties, it is conve-
nient to consider the associated canonical partition func-
tion which is given by

Z(B) = /OwdEQ(E)e_ﬁE
=/O dEdepE(Z)e*f’E

=fd1“ W(Z; B). (6)

Here W(Z; B) is the statistical weight of a given state Z.
This key quantity can be calculated, once the form of the
spectral density is known, as

W(z; ) = fo dE pi(Z)e FE

2
~ exp|:—£2(1 - e‘ﬂ‘fﬁ/ﬂ)] (7)
oz
The last relation holds exactly when the spectral strength
distribution is of Poisson form, as is the case for a

harmonic oscillator [2,8].

This latter result is very encouraging, because the ex-
pression (7) for the statistical weight W (Z; 8) leads to
physically appealing statistical properties, as is already
shown in Ref. [2] and further discussed in Ref. [8]. In
order to illustrate this central point, we show in Fig. 1
the temperature dependence of the mean excitation en-
ergy for a system of confined nucleons, when a sampling
of the wave packet space is performed with the statis-
tical weight (7). At low temperatures the system ex-
hibits a typical quantal behavior, with the energy rising
as the square of the temperature. As the temperature
is increased the growth turns linear, as is characteristic
of classical systems. This behavior should be contrasted
with what would happen without the spectral transitions,
i.e., with the standard molecular dynamics. Since the
dynamics is then entirely classical, the system will re-
lax in accordance with the standard Boltzmann weight,
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FIG. 1. Excitation energy versus temperature. A system of
20 protons and 20 neutrons is confined within a sphere of
radius 40'/3r;, and a Metropolis sampling is then performed
on the corresponding antisymmetrized Gaussian wave packets,
based on the modified statistical weight W(Z; 8) given in
Eq. (7). The abscissa is the imposed temperature 7 = 1/8,
and the ordinate is the calculated mean excitation energy
< E > = —9InZ(B)/3B [using the partition function (6) and
with the ground-state energy subtracted], and divided by
the corresponding energy of a system of free nucleons,
Efee = 40 X %T (dashed line). The solid line has been
obtained with the nuclear Fermi-gas formula E* = aT?, using
the level density parameter a = 40/(8 MeV).
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Wetass(Z; B) ~ exp(—BIH ), and its behavior would be 9

classical throughout the entire temperature range [2]. ot b(z1,...,2450) =

Thus, the addition of the stochastic term (4) leads to

dynamical evolutions that populate the parameter space

in better accordance with quantum statistics. We there-

fore expect that the incorporation of such stochastic tran-

sitions into molecular-dynamics simulations may signifi- where the transport coefficients V, and Dy, can be

cantly improve the description of features sensitive to the calculated approximately as functions of Z, as we shall

quantal fluctuations in the many-body system, such as the sketch below.

specific heat at low temperatures. We first note that the residual interaction V in the ex-
In order to perform a practical implementation of the pression (4) for the stochastic transition rate should not

proposed stochastic dynamics, it is helpful to employ have any diagonal matrix elements (since such transitions

techniques from transport theory. The introduction of the would be spurious). This can be accomplished by sub-

transitions governed by (4) leads to a diffusive transport tracting its expectation value V= (ZIVIZ) before squar-

process in the space of the wave packet parameter vectors ing. It is then possible to show that the transition rate (4)

R}

Zy

b, )

-5
"3

— Dun
z,,a n'

Z. The evolution of the associated distribution, ¢ (Z; 1), can be written on the following convenient approximation
can then be described by a Fokker-Planck equation, | form:
oV 4 = = oH | oH
— 7 + ~ — - 8Z || 6Z - Z 0Z - C - 6Z — —_— t —
w(Z 8Z) - < oz ) ( 7 )pE( )exp|: C Bz(az 7 7 5z>]
)]

where an expansion has been made in terms of the change | Vector elements of the drift coefficient V are given by
in the wave packet parameter, §Z. The coefficient 8, =

—dlnpp/dH may be interpreted as a state-dependent Va(Z) = fd["sznw(z — 7))
temperature, as is perhaps most easily seen by estimating
the temperature of a microcanonical ensemble, dlnpg oH
~(D-2%) =-8(D =) .19
_ dInQ(E) [ AT p dlnpg 0Z /, 0Z /n
= PE
2 S0 (E) oE where the A X A diffusion coefficient matrix D has the
1 f dlnpg (10) tensor elements
Q(E) PESH
The total rate of transitions from a given state Z into 2D (Z) = [ AT’ 62,6ZywW(Z — Z)
any other state Z' can then readily be calculated, v
2T 2 2 - -1 __1_ -1, 0
wo(Z) = fdf’w(Z — Z) = E Yipe(Z)ePzo7, ~ wo[Cnn, + ") (C 7 )n
an FRY »
. . X|—-C . (16)
where we have introduced the quantity kY / o
(ﬂ/ oV
= @IV - V)|z) = -c7h- A (12)  The expresston in the square brackets holds to the leading

which can be regarded as a typlcal value of the square of order in BZ It is easy to see that both the center-of-mass
the transition matrix element in (4). The expected number ~ Position and the total momentum remain unchanged on
of transitions taking place during a small time interval A;  the average, Z" Va = 0, whereas the individual histories
is then ny = woAt, which may also be interpreted as the w111 exhibit diffusive Browman—type excursions from the
probability for any transition to occur during At. initial valugs, due to tl}e composite nature of the wave

The transport coefficients entering the Fokker-Planck  Packets. This behavior is to be expected, since the energy
equation (8) characterize the first and second moments H is no longer a constant of motion but will fluctuate
of the stochastic changes 8z,, that have accumulated over ~ around its initial value E.

the short time interval Az, when an average is taken over The existence of the aboye approgimate expressions
the entire ensemble of possible transitions Z — Z/, (11), (15), and (16) makes it a relatively easy task to
< 8z, > = V,(Z)At (13) pick the stochastic changes &z, at each time step in

" " ’ the course of the dynamical evolution, requiring only the

< 82,8Zy > = 2Dnn(Z)At . (14)  diagonalization of the coefficient matrix C. Thus, it is

Using the above simple expression (9) for the basic fairly easy to implement the proposed stochastic extension
transition rate, we obtain the following results. The A and it may therefore be of practical utility.
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Up to this point the presentation has been kept on a gen-
eral level, since the method is broadly applicable and may
be of interest in a variety of physical scenarios. How-
ever, since we were motivated by heavy-ion physics, we
wish to finally discuss how the proposed method may
be of utility in this particular subfield. Generally, the
complexity of nuclear collisions necessitate microscopic
simulations for an informative interpretation of the data.
Currently, considerable interest is focused on so-called
multifragmentation events, in which the collision leads
to the production of several massive nuclear fragments.
It has proven difficult to reproduce this phenomenon by
ordinary molecular dynamics, apparently because any
massive fragments formed tend to be too excited and,
consequently, will quickly break up. However, if the
presently proposed stochastic transitions are incorporated,
an excited massive fragment will explore its spectrum of
eigenstates and may, thereby, become trapped into more
bound configurations, thus leading to an enhanced sur-
vival probability. In order to appreciate this mechanism,
it is important to recognize that the overall transition rate
and the spectral spread of the transitions are proportional
to the variance 7%, so it generally increases with the in-
trinsic excitation energy. The chance for escaping from a
well-bound configuration is then smaller than the chance
for deexciting into it, as is consistent with detailed bal-
ance, since the well-bound state has a higher statistical
weight. It thus appears very possible that the proposed
model may account better for the fragment yields. We are
presently exploring this central issue by means of dynam-
ical simulations and our preliminary results appear very
encouraging [9].

In this Letter, we have proposed a novel method for
taking account of the inherent energy spread associated
with the wave packets propagated in molecular-dynamics
simulations of quantum many-body systems. This simple
physical idea is realized by augmenting the standard
deterministic equations of motion for the wave packet
parameters by a stochastic term that causes continual
transitions between wave packets. The resulting model

is thus akin to the transport treatment of Brownian
motion, but it employs a Langevin force that originates
in the quantal fluctuations of the system. The emerging
dynamics exhibits appealing quantum statistical features
and is therefore expected to present a significant advance
when complicated processes are addressed. In particular,
application to nuclear multifragmentation processes may
yield dynamical evolutions that are in qualitatively better
agreement with the observations.
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